Где применяют закон ампера. Применение закона Ампера

Закон Ампера, формулировка которого известна любому физику, является одним из четырех уравнений Максвелла, которые в своей совокупности образуют фундамент всей теории классической электродинамики.

Уравнения Максвелла

Часть закона Ампера о том, как электрические токи, источники магнитного поля, относятся к самому полю. Другими словами, это (в совокупности с законом Гаусса для магнетизма) точно описывает картину, в которой электрические токи порождают магнитные поля. Поправочная часть Максвелла является значимой, поскольку она говорит, что магнитные поля появляются, когда электрические поля изменяются во времени. Это также важно, поскольку уравнения Максвелла не согласуются без него. С коррекцией термина можно вывести формулы сохранения электрического заряда и предсказать существование электромагнитных волн, которые перемещаются со скоростью.

В доходчивой форме закон Ампера принимает участие соответственно линейности уравнений Максвелла и, следовательно, всей теории классической электродинамики. Если взять два токовых распределителя и их совместить, тогда магнитное поле будет представлять собой сумму магнитных полей, производимых каждой конфигурацией.

Регулировочный элемент Максвелла является еще линейным, и, следовательно, электромагнитные волны являются линейными тоже. Они мешают друг другу согласно принципу суперпозиции и проходят прямо сквозь друг друга без рассеяния.

Как объяснить закон Ампера простым языком?

Простейшим объяснением является то, что провод переносит ток. Если игнорировать магнитное поле Земли, можно представить, что вертикальный провод с электрическим током идет вверх.

Люди склонны говорить об электромагнетизме, но электричество отдельно от магнетизма, поскольку установлено, что электричество и магнетизм влияют друг на друга и могут быть объединены в систему уравнений. В частности, в случае токоведущих проводов электрический ток производит магнитное поле. Ориентация этих полей не очень понятна, но это заметно. Магнитные компасы могут быть размещены вокруг токоведущих проводов, а направления поля можно увидеть в направлениях игловых точек.

Есть возможность рассмотреть это из-за простой симметрии. Ток в проводе производит магнитное поле, но что должно произойти с узором в этих полях, если провод остается вертикальным и поворачивается на некоторый угол около этой вертикальной оси? Дело в том, что ток не меняется в любом случае на такой поворот. Он по-прежнему идет прямо. Следовательно, это вращение не может изменить картину магнитного поля, которое производится.

Структуры

Есть только две возможные структуры, которые работали бы от этого. Либо поля направлены радиально в сторону или подальше от провода, или вокруг провода. Первая возможность — это то, что люди получают от электрически заряженного провода электрическое поле. Вторая возможность — это то, что можно получить магнитное поле, создаваемое током, через провода.

Для одиночного проводника формы поля имеют круговые структуры по центру провода, и сила поля убывает с расстоянием. Как шаблон, это очень похоже на рябь, которая образуется при падении камня в воду. Существует два основных различия между прудом и картиной магнитного поля. Первый - это то, что магнитное поле остается неизменным на заданном расстоянии. Оно не будет расти, а будет уменьшаться в заданной точке. Второй заключается в том, что магнитное поле имеет направление к каждой точке касания окружности.

Сила тока и расстояние

Следующая часть закона Ампера гласит, что сила магнитного поля зависит от силы тока и расстояния от провода. В результате получается, что, если умножить силу магнитного поля на окружность круга, этот продукт будет пропорционален силе электрического тока. То есть, если удвоить расстояние от провода, линия окружности удваивается, а величина магнитного поля падает в 2 раза.

Но закон Ампера позволяет разобраться с токами, которые производятся в системах более сложных, чем одиночный провод. Но все эти случаи эквивалентны. Это означает, что идея магнитной напряженности поля, умноженной на длину пути, остается полезной и по-прежнему зависит от суммы всех токов внутри контура, который образует путь.

Как можно понять закон в практическом смысле?

Это влечет за собой некоторые векторные исчисления, которые можно объяснить интуитивно понятным способом:

  • Магнитные поля создаются электрическими токами.
  • Магнитные поля «накручены» на ток, который их производит в заданном направлении.
  • Чем больше ток, тем сильнее создается магнитное поле. Напряженность магнитного поля пропорциональна току.

Закон Ампера связывает вместе эти понятия в одной из двух математических формул. Поле становится более интенсивным по мере приближения к проводу.

Пропорциональность суммарному току

В интегральной форме закона Ампера используется понятие линейного интеграла. В принципе, можно выбрать определенный цикл (т. е. замкнутый путь через космос) и пройтись вдоль петли, сложить составляющие магнитного поля. Это покажет, насколько магнитное поле вьется вокруг поверхности, ограниченной петлей. Утверждение, что эта величина пропорциональна суммарному току, который ограничен петлей, верно.

Чтобы понять это, нужно рассмотреть контур, ограничивающий провод. Если выполнить петлю вокруг провода, магнитное поле всегда идет к точке в том же направлении, что означает, что общая сумма криволинейного интеграла будет положительной. Это говорит, что можно пройти вокруг тока! Кроме того, можно определить направление тока, используя правило правой руки. Если поток тока пошел в другом направлении, значение криволинейного интеграла переворачивается.

Теперь можно предположить, что взят цикл, в котором не подкладывают проволоку, но делают круг против часовой стрелки над проводом. Если пройтись вокруг нижней части петли, в большинстве случаев направление будет идти против течения, поэтому вклад в интеграл будет отрицательным. Но когда направление проходит вокруг верхней части петли, в большинстве случаев оно будет такое же, что и ток, так что вклад будет положительным. Это говорит, что нет ничего внутри цикла (либо нет тока вообще, или течения токов в противоположных направлениях компенсируют друг друга).

Дифференциал

В дифференциальной форме применение закона Ампера происходит в концепции завитков векторной области. Локон — это количественное измерение, векторное поле — это «керлинг» вокруг данной точки. Если брать все меньшие и меньшие циклы вокруг точки и вычислить криволинейный интеграл, результат должен стать примерно пропорциональным площади петли. Коэффициентом пропорциональности является завиток.

Если взять цикл, который не содержат провода, криволинейный интеграл всегда будет равен нулю. Если петли все дальше и дальше, он всегда будет равен нулю. Коэффициент пропорциональности будет равен нулю, и ротор будет равен нолю (если быть точным, то нулевой вектор). Но если находиться внутри провода, то, независимо от того, какие петли, он будет получать ток, протекающий через него. Идея заключается в том, что для бесконечно малого контура только плотность тока в этот момент будет «внутри» него, а так только плотность тока в этой точке будет определять значение криволинейного интеграла. Поэтому ротор должен быть пропорционален плотности тока в данной точке, так как он соотносится по значению криволинейного интеграла по бесконечно малой петле.

Заключение

В дифференциальной и интегральной формах закон Ампера эквивалентен, он может быть показан путем применения теоремы Стокса. По существу, дифференциальная форма является бесконечно малой версией второго уравнения в «интегральной форме». Но теорема Стокса — это тема другого исследования.

Если провод, по которому течет ток, находится в магнитном поле, то на каждый из носителей тока действует сила Ампера

Закон Ампера в векторной форме

Устанавливает, что на проводник с током, помещенный в однородное магнитное поле, индукция которого В, действует сила , пропорциональная силе тока и индукции магнитного поля

Направлена перпендикулярно плоскости, в которой лежат векторы dl и B. Для определения направления силы , действующей на проводник с током, помещенный в магнитное поле, применяется правило левой руки.

Чтоб найти силу Ампера для двух бесконечных параллельных проводников, токи которых текут в одном направлении и эти проводники находятся на расстоянии r, необходимо:

Бесконечный проводник с током I1 в точке на расстоянии r создаёт магнитное поле с индукцией:

По закону Био-Савара-Лапласа для прямого тока:

Теперь по закону Ампера найдём силу, с которой первый проводник действует на второй:

По правилу буравчика, направлена в сторону первого проводника (аналогично и для , а значит, проводники притягиваются).

Интегрируем, учитывая только проводник единичной длины (пределы l от 0 до 1) и сила Ампера получается:

В формуле мы использовали:

Значение тока

Скорость хаотического движения носителя

Скорость упорядоченного движения

>> Применение закона Ампера. Громкоговоритель

§ 5 ПРИМЕНЕНИЕ ЗАКОНА АМПЕРА. ГРОМКОГОВОРИТЕЛЬ

Зная направление и модуль силы, действующей на любой участок проводника с током, можно вычислить суммарную силу, действующую на весь замкнутый проводник. Для этого надо найти сумму сил, действующих на каждый участок проводника с током.

Закон Ампера используют для расчета сил, действующих на проводники с током , во многих технических устройствах. В частности - в электродвигателях, с которыми ны ознакомились в предыдущих классах.

Разберем устройство громкоговорителя.

Громкоговоритель служит для возбуждения звуковых волн под действием переменного электрического тока, меняющегося со звуковой частотой. В электродинамическом громкоговорителе (динамике) используется действие магнитного поля постоянного магнита на переменный ток в подвижной катушке.

Схема устройства громкоговорителя показана на рисунке 1.22, а. Звуковая катушка ЗК располагается в зазоре кольцевого магнита М. С катушкой жестко связан бумажный конус - диафрагма D. Диафрагма укреплена на упругих подвесах, позволяющих ей совершать вынужденные колебания вместе с подвижной катушкой.

По катушке проходит переменный электрический ток с частотой, paвной звуковой частоте сигнала с микрофона или с выхода радиоприемника, проигрывателя, магнитофона. Под действием силы Ампера катушка колеблется вдоль оси громкоговорителя ОО 1 (см. рис. 1.22, а) в такт с колебаниями токa. Эти колебания передаются диафрагме, и поверхность диафрагмы излучает звуковые волны.

Первоклассные громкоговорители воспроизводят без значительных искажений звуковые колебания в диапазоне 40-15 000 Гц. Но такие устройства очень сложны. Поэтому обычно применяют системы из нескольких громкоговорителей, каждый из которых воспроизводит звук в определенном небольшом интервале частот. Общим недостатком всех громкоговорителей является их малый КПД . Они излучают лишь 1 - 3% проводимой энергии.

Звук в радиоприемнике, проигрывателе и магнитофоне возникает в результате движения катушки с током в поле постоянного магнита.

Наряду с электромеханическими громкоговорителями в настоящее время широкое применение получили громкоговорители, основаннью на пьезоэлектрическом эффекте. Этот эффект проявляется в виде деформации некоторых типов кристаллов в электростатическом поле . Две пьезопластинки склеивают. Пластинки подбирают так, что одна из них увеличивается но длине под действием поля, а другая уменьшается (см. рис. 1.22, б). В результате получают элемент, который сильно изгибается под действием поля и при переменном электрическом поле создает акустическую волну. Пьезогромкоговорители очень удобны в изготовлении и могут быть совсем маленькими. Вследствие этого они нашли широкое применение в радиотелефонах, мобильных телефонах, ноутбуках и микрокомпьютерах.

Взаимодействие токов и пьезоэлектрический эффект положены в основу принципа работы современных громкоговорителей.

Укажите направление вектора магнитной индукции, электрического тока и силы Ампера на схеме громкоговорителя (см. рис. 1.22).

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Закон Ампера показывает, с какой силой действует магнитное поле на помещенный в него проводник. Эту силу также называют силой Ампера .

Формулировка закона: сила, действующая на проводник с током, помещенный в однородное магнитное поле, пропорциональна длине проводника, вектору магнитной индукции, силе тока и синусу угла между вектором магнитной индукции и проводником .

Если размер проводника произволен, а поле неоднородно, то формула выглядит следующим образом:

Направление силы Ампера определяется по правилу левой руки.

Правило левой руки : если расположить левую руку так, чтобы перпендикулярная составляющая вектора магнитной индукции входила в ладонь, а четыре пальца были вытянуты по направлению тока в проводнике, то отставленный на 90 °большой палец, укажет направление силы Ампера.

МП движущего заряда. Действие МП на движущийся заряд. Сила Ампера, Лоренца.

Любой проводник с током создает в окружающем пространстве магнитное поле. При этом электрический же ток является упорядоченным движением электрических зарядов. Значит можно считать, что любой движущийся в вакууме или среде заряд порождает вокруг себя магнитное поле. В результате обобщения многочисленных опытных данных был установлен закон, который определяет поле В точечного заряда Q, движущегося с постоянной нерелятивистской скоростью v. Этот закон задается формулой

(1)

где r - радиус-вектор, который проведен от заряда Q к точке наблюдения М (рис. 1). Согласно (1), вектор В направлен перпендикулярно плоскости, в которой находятся векторы v и r: его направление совпадает с направлением поступательного движения правого винта при его вращении от v к r.

Рис.1

Модуль вектора магнитной индукции (1) находится по формуле

(2)

где α - угол между векторами v и r. Сопоставляя закон Био-Савара-Лапласа и (1), мы видим, что движущийся заряд по своим магнитным свойствам эквивалентен элементу тока: Idl = Qv

Действие МП на движущийся заряд.

Из опыта известно, что магнитное поле оказывает действие не только на проводники с током, но и на отдельные заряды, которые движутся в магнитном поле. Сила, которая действует на электрический заряд Q, движущийся в магнитном поле со скоростью v, называется силой Лоренца и задается выражением: F = Q где В - индукция магнитного поля, в котором заряд движется.

Чтобы определить направление силы Лоренца используем правило левой руки: если ладонь левой руки расположить так, чтобы в нее входил вектор В, а четыре вытянутых пальца направить вдоль вектора v (для Q>0 направления I и v совпадают, для Q На рис. 1 продемонстрирована взаимная ориентация векторов v, В (поле имеет направление на нас, на рисунке показано точками) и F для положительного заряда. Если заряд отрицательный, то сила действует в противоположном направлении.

Модуль силы Лоренца, как уже известно, равен F = QvB sin a; где α - угол между v и В.

МП не оказывает действия на покоящийся электрический заряд. Этим магнитное поле существенно отличается от электрического. Магнитное поле действует только на движущиеся в нем заряды.

Зная действие силы Лоренца на заряд можно найти модуль и направление вектора В, и формула для силы Лоренца может быть применена для нахождения вектора магнитной индукции В.

Поскольку сила Лоренца всегда перпендикулярна скорости движения заряженной частицы, то данная сила может менять только направление этой скорости, не изменяя при этом ее модуля. Значит, сила Лоренца работы не совершает.

В случае, если на движущийся электрический заряд вместе с магнитным полем с индукцией В действует еще и электрическое поле с напряженностью Е, то суммарная результирующая сила F, которая приложена приложенная к заряду, равна векторной сумме сил - силы, действующей со стороны электрического поля, и силы Лоренца: F = QE + Q

Сила Ампера, Лоренца.

Сила, действующая на проводник с током в магнитном поле, называется силой Ампера.

Сила действия однородного маг­нитного поля на проводник с током прямо пропорциональна силе тока, длине проводника, модулю вектора индукции магнитного поля, синусу угла между вектором индукции магнитного поля и проводником:

F = B.I.l. sin α - закон Ампера.

Сила, действующая на заряженную движущуюся частицу в магнитном поле, называется силой Лоренца:

Явление электромагнитной индукции. Закон Фарадея. ЭДС индукции в движущихся проводниках. Самоиндукция.

Фарадей предположил, что если вокруг проводника с током существует магнитное поле, то естественно ожидать, что должно происходить и обратное явление – возникновение электрического тока под действием магнитного поля. И вот в 1831 г. Фарадей публикует статью, где сообщает об открытии нового явления – явления электромагнитной индукции.

Опыты Фарадея были чрезвычайно просты. Он присоединял гальванометр G к концам катушки L и приближал к ней магнит. Стрелка гальванометра отклонялась, фиксируя появление тока в цепи. Ток протекал, пока магнит двигался. При отдалении магнита от катушки гальванометр отмечал появление тока противоположного направления. Аналогичный результат отмечался, если магнит заменяли катушкой с током или замкнутым контуром с током.

Движущиеся магнит или проводник с током создают через катушку L переменное магнитное поле. В случае их неподвижности создаваемое ими поле постоянно. Если вблизи замкнутого контура поместить проводник с переменным током, то в замкнутом контуре также возникнет ток. На основе анализа опытных данных Фарадей установил, что ток в проводящих контурах появляется при изменении магнитного потока через площадь, ограниченную этим контуром.

Этот ток был назван индукционным. Открытие Фарадея было названо явлением электромагнитной индукции и легло в дальнейшем в основу работы электрических двигателей, генераторов, трансформаторов и подобных им приборов.

Итак, если магнитный поток через поверхность, ограниченную некоторым контуром, изменяется, то в контуре возникает электрический ток. Известно, что электрический ток в проводнике может возникнуть только под действием сторонних сил, т.е. при наличии э.д.с.. В случае индукционного тока э.д.с., соответствующая сторонним силам, называется электродвижущей силой электромагнитной индукции εi.

Э.д.с. электромагнитной индукции в контуре пропорциональна скорости изменения магнитного потока Фm сквозь поверхность, ограниченную этим контуром:

где к – коэффициент пропорциональности. Данная э.д.с. не зависит от того, чем вызвано изменение магнитного потока – либо перемещением контура в постоянном магнитном поле, либо изменением самого поля.

Итак, направление индукционного тока определяется правилом Ленца: При всяком изменении магнитного потока сквозь поверхность, ограниченную замкнутым проводящим контуром, в последнем возникает индукционный ток такого направления, что его магнитное поле противодействует изменению магнитного потока.

Обобщением закона Фарадея и правила Ленца является закон Фарадея - Ленца: Электродвижущая сила электромагнитной индукции в замкнутом проводящем контуре численно равна и противоположна по знаку скорости изменения магнитного потока сквозь поверхность, ограниченную контуром:

Это выражение представляет собой основной закон электромагнитной индукции.

При скорости изменения магнитного потока 1Вб/с в контуре индуцируется э.д.с. в 1 В.

Пусть контур, в котором индуцируется э.д.с., состоит не из одного, а из N витков, например, представляет собой соленоид. Соленоид – это цилиндрическая катушка с током, состоящая из большого числа витков. Так как витки в соленоиде соединяются последовательно, εi в данном случае будет равна сумме э.д.с., индуцируемых в каждом из витков по отдельности :

Немецкий физик Г. Гельмгольц доказал, что закон Фарадея-Ленца является следствием закона сохранения энергии. Пусть замкнутый проводящий контур находится в неоднородном магнитном поле. Если в контуре течет ток I, то под действием сил Ампера незакрепленный контур придет в движение. Элементарная работа dA, совершаемая при перемещении контура за время dt, будет составлять

dA = IdФm,

где dФm – изменение магнитного потока сквозь площадь контура за время dt. Работа тока за время dt по преодолению электрического сопротивления R цепи равна I2Rdt. Полная работа источника тока за это время равна εIdt. По закону сохранения энергии работа источника тока затрачивается на две названные работы, т.е.

εIdt = IdФm + I2Rdt.

Разделив обе части равенства на Idt, получим

Следовательно, при изменении магнитного потока, сцепленного с контуром, в последнем возникает электродвижущая сила индукции

Электромагнитные колебания. Колебательной контур.

Электромагнитные колебания - это колебания таких величин, индуктивность, как сопротивление, ЭДС, заряд, сила тока.

Колебательный контур - это электрическая цепь, которая состоит из последовательно соединенных конденсатора, катушки и резистора. Изменение электрического заряда на обкладке кон- денсатора с течением времени описывается дифференциальным уравнением:

Электромагнитные волны и их свойства.

В колебательном контуре происходит процесс перехода электрической энергии конденсатора в энергию магнитного поля катушки и наоборот. Если в определенные моменты времени компенсировать потери энергии в контуре на сопротивление за счет внешнего источника, то получим незатухающие электрические колебания, которые через антенну могут быть излучены в окружающее пространство.

Процесс распространения электромагнитных колебаний, периодических изменений напряженностей электрического и магнитных полей, в окружающем пространстве называется электромагнитной волной.

Электромагнитные волны охватывают большой спектр длин волн от 105 до 10 м и по частотам от 104 до 1024 Гц. По названию электромагнитные волны разделяются на радиоволны, инфракрасное, видимое и ультрафиолетовое излучения, рентгеновские лучи и -излучение. В зависимости от длины волны или частоты свойства электромагнитных волн меняются, что является убедительным доказательством диалектико-материалистического закона перехода количества в новое качество.

Электромагнитное поле материальное и обладает энергией, количеством движения, массой, перемещается в пространстве: в вакууме со скоростью С, а в среде со скоростью: V= , где = 8,85 ;

Объемная плотность энергии электромагнитного поля. Практическое исполь­зование электромагнитных явлений весьма широкое. Это - системы и средства связи, радиовещания, телевидения, электронно-вычислительная техника, системы управления различного назна­чения, измерительные и медицинские приборы, бытовая электро- и радиоаппаратура и другие, т.е. то, без чего невозможно представить себе современное общество.

Как действует на здоровье людей мощное электромагнитное излучение, точных научных данных почти нет, есть только неподтвержденные гипотезы и, в общем-то, небезосновательные опасение, что все неестественное действует губительно. Доказано, что ультрафиолетовое, рентгеновское и -излучение большой интенсивности во многих случаях наносят реальный вред всему живому.

Геометрическая оптика. Законы ГО.

Геометрическая (лучевая) оптика использует идеализированное представление о световом луче – бесконечно тонком пучке света, распространяющемся прямолинейно в однородной изотропной среде, а также представления о точечном источнике излучения, равномерно светящем во все стороны. λ – длина световой волны, – характерный размер

предмета, находящегося на пути волны. Геометрическая оптика является предельным случаем волновой оптики и ее принципы выполняются при соблюдении условия:

В основе геометрической оптики лежит так же принцип независимости световых лучей: лучи при перемещении не возмущают друг друга. Поэтому перемещения лучей не мешают каждому из них распространяться независимо друг от друга.

Для многих практических задач оптики можно не учитывать волновые свойства света и считать распространение света прямолинейным. При этом картина сводится к рассмотрению геометрии хода световых лучей.

Основные законы геометрической оптики.

Перечислим основные законы оптики, следующие из опытных данных:

1) Прямолинейное распространение.

2) Закон независимости световых лучей, то есть два луча, пересекаясь, никак не мешают друг другу. Этот закон лучше согласуется с волновой теорией, так как частицы в принципе могли бы сталкиваться друг с другом.

3) Закон отражения. луч падающий, луч отраженный и перпендикуляр к поверхности раздела, восстановленный в точке падения луча, лежат в одной плоскости, называемой плоскостью падения; угол падения равен углу

Отражения.

4) Закон преломления света.

Закон преломления : луч падающий, луч преломленный и перпендикуляр к поверхности раздела, восстановленный из точки падения луча, лежат в одной плоскости – плоскости падения. Отношение синуса угла падения к синусу угла отражения равно отношению скоростей света в обеих средах.

Sin i1/ sin i2 = n2/n1 = n21

где – относительный показатель преломления второй среды относительно первой среды. n21

Если вещество 1 – пустота, вакуум, то n12 → n2 – абсолютный показатель преломления вещества 2. Можно легко показать, что n12 = n2 /n1 , в этом равенстве слева относительный показатель преломления двух веществ (например, 1 – воздух, 2 – стекло), а справа – отношение их абсолютных показателей преломления.

5) Закон обратимости света (его можно вывести из закона 4). Если направить свет в обратном направлении, он пройдёт по тому же пути.

Из закона 4) следует, что если n2 > n1 , то Sin i1 > Sin i2 . Пусть теперь у нас n2 < n1 , то есть свет из стекла, например, выходит в воздух, и мы постепенно увеличиваем угол i1.

Тогда можно понять, что при достижении некоторого значения этого угла (i1)пр окажется, что угол i2 окажется равным π /2 (луч 5). Тогда Sin i2 = 1 и n1 Sin (i1)пр = n2 . Итак Sin

Что такое сила ампера

В 1820 году выдающийся французский физик Андре Мари Ампер (именно в его честь названа единица измерения электрического тока) сформулировал один из основополагающих законов всей электротехники. Впоследствии за этим законом закрепилось название сила ампера.

Как известно, при прохождении по проводнику электрического тока вокруг него возникает свое собственное (вторичное) магнитное поле, линии напряженности которого формируют своеобразную вращающуюся оболочку. Направление этих линий магнитной индукции определяют с помощью правила правой руки (второе название "правило буравчика"): мысленно обхватываем правой рукой проводник так, чтобы течение заряженных частиц совпадало с направлением, указываемым отогнутым большим пальцем. В результате другие четыре пальца, обхватывающие провод, укажут на вращение поля.

Если расположить параллельно два таких проводника (тонких провода), то на взаимодействие их магнитных полей будет влиять сила ампера. В зависимости от направления тока в каждом проводнике, они могут отталкиваться или притягиваться. При токах, текущих в одном направлении, сила ампера оказывает на них притягивающее действие. Соответственно, противоположное направление токов вызывает отталкивание. В этом нет ничего удивительного: хотя одноименные заряды отталкиваются, в данном примере взаимодействуют не сами заряды, а магнитные поля. Так как направление их вращения совпадает, то итоговое поле представляет собой векторную сумму, а не разность.

Другими словами, магнитное поле определенным образом воздействует на проводник, пересекающий линии напряженности. Сила ампера (произвольная форма проводника) определяется из формулы закона:

где - I - значение силы тока в проводнике; B - индукция магнитного поля, в котором размещается проводящий ток материал; L - взятый для расчетов длины проводника с током (причем, в данном случае считается, что длина проводника и сила стремятся к нулю); альфа (а) - векторный угол между направлением движения заряженных элементарных частиц и линиями напряженности внешнего поля. Следствие следующее: когда угол между векторами составляет 90 градусов его sin = 1, а значение силы максимально.

Векторное направление действия силы ампера определяют посредством правила левой руки: мысленно размещаем ладонь левой руки таким образом, чтобы линии (векторы) магнитной индукции внешнего поля входили в раскрытую ладонь, а остальные четыре выпрямленных пальца указывали направление, в котором движется ток в проводнике. Тогда большой палец, отогнутый под углом 90 градусов, покажет направление действующей на проводник силы. Если угол между вектором электрического тока и произвольной линией индукции слишком мал, то для упрощения применения правила в ладонь должен входить не сам вектор индукции, а модуль.

Применение силы ампера дало возможность создать электродвигатели. Все мы привыкли к тому, что достаточно щелкнуть выключателем электрического бытового прибора, оснащенного двигателем, чтобы его исполнительный механизм пришел в действие. А о процессах, происходящих при этом, никто особо не задумывается. Направление силы ампера не только объясняет принцип работы двигателей, но и позволяет определить, куда именно будет направлен вращающий момент.

Для примера представим двигатель постоянного тока: его якорь - это каркас-основа с обмоткой. Внешнее магнитное поле создается специальными полюсами. Так как обмотка, намотанная на якорь, круговая, то с противоположных его сторон направление тока на участках проводника встречно. Следовательно, вектора действия силы ампера также встречны. Так как якорь закреплен на подшипниках, то взаимное действие векторов силы ампера создает вращающий момент. С ростом действующего значения тока увеличивается и сила. Именно поэтому номинальный электрический ток (указан в паспорте на электрооборудование) и вращающий момент непосредственно взаимосвязаны. Увеличение тока ограничивается конструктивными особенностями: сечением использованного для обмотки провода, количеством витков и пр.

Сила Ампера

– Сила Ампера (или закон Ампера)

Направление силы Ампера находится по правилу векторного произведения – по правилу левой руки: четыре вытянутых пальца левой руки расположить по направлению тока, вектор входит в ладонь, отогнутый под прямым углом большой палец покажет направление силы, действующей на проводник с током. (Можно также определить направление с помощью правой руки: вращаем четыре пальца правой руки от первого сомножителя ко второму , большой палец укажет направление .)

Модуль силы Ампера

,

где α – угол между векторами и .

Если поле однородно, а проводник с током конечных размеров, то

При перпендикулярном

  1. Определение единицы измерения силы тока.

Любой проводник с током создает вокруг себя магнитное поле. Если поместить в это поле другой проводник с током, то между этими проводниками возникают силы взаимодействия. При этом параллельные сонаправленные токи притягиваются, противоположно направленные - отталкиваются.


Рассмотрим два бесконечно длинных параллельных проводника с токами I 1 иI 2, находящимися в вакууме на расстоянии d (для вакуума µ = 1). В соответствии с законом Ампера

Магнитное поле прямого тока равно

,

сила, действующая на единицу длины проводника

Сила, действующая на единицу длины проводника между двумя бесконечно длинными проводниками с током, прямо пропорциональна силе тока в каждом из проводников и обратно пропорциональна расстоянию между ними.

Определение единицы измерения силы тока – Ампера:

За единицу силы тока в системе СИ принята такая сила постоянного тока, который протекая по двум бесконечно длинным параллельным проводникам бесконечно малого сечения, расположенным в вакууме на расстоянии 1 м друг от друга, вызывает силу, действующую на единицу длины проводника, равную 2·10-7 Н.

µ = 1; I 1 = I 2 = 1 A ; d = 1 м; µ 0 = 4π·10-7 Гн/м – магнитная постоянная.

/ fizika / Закон Ампера. Взаимодействие параллельных токов

Закон Ампера. Взаимодействие параллельных токов.

Закон Ампера - закон взаимодействия постоянных токов. Установлен Андре Мари Ампером в 1820. Из закона Ампера следует, что параллельныепроводники с постоянными токами, текущими в одном направлении, притягиваются, а в противоположном - отталкиваются. Законом Ампера называется также закон, определяющий силу, с которой магнитное поле действует на малый отрезок проводника с током. Сила , с которой магнитное поле действует на элемент объёма dV проводника с током плотности , находящегося в магнитном поле с индукцией .

Закон Ампера показывает, с какой силой действует магнитное поле на помещенный в него проводник. Эту силу также называют силой Ампера .

Формулировка закона: сила, действующая на проводник с током, помещенный в однородное магнитное поле, пропорциональна длине проводника, вектору магнитной индукции, силе тока и синусу угла между вектором магнитной индукции и проводником .

Если размер проводника произволен, а поле неоднородно, то формула выглядит следующим образом:

Направление силы Ампера определяется по правилу левой руки.

Правило левой руки : если расположить левую руку так, чтобы перпендикулярная составляющая вектора магнитной индукции входила в ладонь, а четыре пальца были вытянуты по направлению тока в проводнике, то отставленный на 90 °большой палец, укажет направление силы Ампера.

МП движущего заряда. Действие МП на движущийся заряд. Сила Ампера, Лоренца.

Любой проводник с током создает в окружающем пространстве магнитное поле. При этом электрический же ток является упорядоченным движением электрических зарядов. Значит можно считать, что любой движущийся в вакууме или среде заряд порождает вокруг себя магнитное поле . В результате обобщения многочисленных опытных данных был установлен закон, который определяет поле В точечного заряда Q, движущегося с постоянной нерелятивистской скоростью v. Этот закон задается формулой

(1)

где r — радиус-вектор, который проведен от заряда Q к точке наблюдения М (рис. 1). Согласно (1), вектор В направлен перпендикулярно плоскости, в которой находятся векторы v и r: его направление совпадает с направлением поступательного движения правого винта при его вращении от v к r.

Рис.1

Модуль вектора магнитной индукции (1) находится по формуле

(2)

где α — угол между векторами v и r. Сопоставляя закон Био-Савара-Лапласа и (1), мы видим, что движущийся заряд по своим магнитным свойствам эквивалентен элементу тока: Idl = Qv

Действие МП на движущийся заряд.

Из опыта известно, что магнитное поле оказывает действие не только на проводники с током, но и на отдельные заряды, которые движутся в магнитном поле. Сила, которая действует на электрический заряд Q, движущийся в магнитном поле со скоростью v, называется силой Лоренца и задается выражением: F = Q где В — индукция магнитного поля, в котором заряд движется.

Чтобы определить направление силы Лоренца используем правило левой руки: если ладонь левой руки расположить так, чтобы в нее входил вектор В, а четыре вытянутых пальца направить вдоль вектора v (для Q>0 направления I и v совпадают, для Q На рис. 1 продемонстрирована взаимная ориентация векторов v, В (поле имеет направление на нас, на рисунке показано точками) и F для положительного заряда. Если заряд отрицательный, то сила действует в противоположном направлении.


Э.д.с. электромагнитной индукции в контуре пропорциональна скорости изменения магнитного потока Фm сквозь поверхность, ограниченную этим контуром:

где к - коэффициент пропорциональности. Данная э.д.с. не зависит от того, чем вызвано изменение магнитного потока - либо перемещением контура в постоянном магнитном поле, либо изменением самого поля.

Итак, направление индукционного тока определяется правилом Ленца: При всяком изменении магнитного потока сквозь поверхность, ограниченную замкнутым проводящим контуром, в последнем возникает индукционный ток такого направления, что его магнитное поле противодействует изменению магнитного потока.

Обобщением закона Фарадея и правила Ленца является закон Фарадея - Ленца: Электродвижущая сила электромагнитной индукции в замкнутом проводящем контуре численно равна и противоположна по знаку скорости изменения магнитного потока сквозь поверхность, ограниченную контуром:

Величину Ψ = ΣΦm называют потокосцеплением или полным магнитным потоком. Если поток, пронизывающий каждый из витков, одинаков (т.е. Ψ = NΦm), то в этом случае

Немецкий физик Г. Гельмгольц доказал, что закон Фарадея-Ленца является следствием закона сохранения энергии. Пусть замкнутый проводящий контур находится в неоднородном магнитном поле. Если в контуре течет ток I, то под действием сил Ампера незакрепленный контур придет в движение. Элементарная работа dA, совершаемая при перемещении контура за время dt, будет составлять

dA = IdФm,

где dФm - изменение магнитного потока сквозь площадь контура за время dt. Работа тока за время dt по преодолению электрического сопротивления R цепи равна I2Rdt. Полная работа источника тока за это время равна εIdt. По закону сохранения энергии работа источника тока затрачивается на две названные работы, т.е.

εIdt = IdФm + I2Rdt.

Разделив обе части равенства на Idt, получим

Следовательно, при изменении магнитного потока, сцепленного с контуром, в последнем возникает электродвижущая сила индукции

Электромагнитные колебания. Колебательной контур.

Электромагнитные колебания — это колебания таких величин, индуктивность, как сопротивление, ЭДС, заряд, сила тока.

Колебательный контур — это электрическая цепь, которая состоит из последовательно соединенных конденсатора, катушки и резистора. Изменение электрического заряда на обкладке кон- денсатора с течением времени описывается дифференциальным уравнением:

Электромагнитные волны и их свойства.

В колебательном контуре происходит процесс перехода электрической энергии конденсатора в энергию магнитного поля катушки и наоборот. Если в определенные моменты времени компенсировать потери энергии в контуре на сопротивление за счет внешнего источника, то получим незатухающие электрические колебания, которые через антенну могут быть излучены в окружающее пространство.

Процесс распространения электромагнитных колебаний, периодических изменений напряженностей электрического и магнитных полей, в окружающем пространстве называется электромагнитной волной.

Электромагнитные волны охватывают большой спектр длин волн от 105 до 10 м и по частотам от 104 до 1024 Гц. По названию электромагнитные волны разделяются на радиоволны, инфракрасное, видимое и ультрафиолетовое излучения, рентгеновские лучи и -излучение. В зависимости от длины волны или частоты свойства электромагнитных волн меняются, что является убедительным доказательством диалектико-материалистического закона перехода количества в новое качество.

Электромагнитное поле материальное и обладает энергией, количеством движения, массой, перемещается в пространстве: в вакууме со скоростью С, а в среде со скоростью: V= , где = 8,85 ;

Объемная плотность энергии электромагнитного поля. Практическое исполь-зование электромагнитных явлений весьма широкое. Это - системы и средства связи, радиовещания, телевидения, электронно-вычислительная техника, системы управления различного назна-чения, измерительные и медицинские приборы, бытовая электро- и радиоаппаратура и другие, т.е. то, без чего невозможно представить себе современное общество.

Как действует на здоровье людей мощное электромагнитное излучение, точных научных данных почти нет, есть только неподтвержденные гипотезы и, в общем-то, небезосновательные опасение, что все неестественное действует губительно. Доказано, что ультрафиолетовое, рентгеновское и -излучение большой интенсивности во многих случаях наносят реальный вред всему живому.

Геометрическая оптика. Законы ГО.

Геометрическая (лучевая) оптика использует идеализированное представление о световом луче - бесконечно тонком пучке света, распространяющемся прямолинейно в однородной изотропной среде, а также представления о точечном источнике излучения, равномерно светящем во все стороны. λ - длина световой волны, - характерный размер

предмета, находящегося на пути волны. Геометрическая оптика является предельным случаем волновой оптики и ее принципы выполняются при соблюдении условия:

h/D << 1 т. е. геометрическая оптика, строго говоря, применима лишь к бесконечно коротким волнам.

В основе геометрической оптики лежит так же принцип независимости световых лучей: лучи при перемещении не возмущают друг друга. Поэтому перемещения лучей не мешают каждому из них распространяться независимо друг от друга.

Для многих практических задач оптики можно не учитывать волновые свойства света и считать распространение света прямолинейным. При этом картина сводится к рассмотрению геометрии хода световых лучей.

Основные законы геометрической оптики.

Перечислим основные законы оптики, следующие из опытных данных:

1) Прямолинейное распространение.

2) Закон независимости световых лучей, то есть два луча, пересекаясь, никак не мешают друг другу. Этот закон лучше согласуется с волновой теорией, так как частицы в принципе могли бы сталкиваться друг с другом.

3) Закон отражения. луч падающий, луч отраженный и перпендикуляр к поверхности раздела, восстановленный в точке падения луча, лежат в одной плоскости, называемой плоскостью падения; угол падения равен углу

Отражения.

4) Закон преломления света.

Закон преломления : луч падающий, луч преломленный и перпендикуляр к поверхности раздела, восстановленный из точки падения луча, лежат в одной плоскости - плоскости падения. Отношение синуса угла падения к синусу угла отражения равно отношению скоростей света в обеих средах.

Sin i1/ sin i2 = n2/n1 = n21

где - относительный показатель преломления второй среды относительно первой среды. n21

Если вещество 1 - пустота, вакуум, то n12 → n2 - абсолютный показатель преломления вещества 2. Можно легко показать, что n12 = n2 /n1 , в этом равенстве слева относительный показатель преломления двух веществ (например, 1 - воздух, 2 - стекло), а справа - отношение их абсолютных показателей преломления.

5) Закон обратимости света (его можно вывести из закона 4). Если направить свет в обратном направлении, он пройдёт по тому же пути.

Из закона 4) следует, что если n2 > n1 , то Sin i1 > Sin i2 . Пусть теперь у нас n2 < n1 , то есть свет из стекла, например, выходит в воздух, и мы постепенно увеличиваем угол i1.

Тогда можно понять, что при достижении некоторого значения этого угла (i1)пр окажется, что угол i2 окажется равным π /2 (луч 5). Тогда Sin i2 = 1 и n1 Sin (i1)пр = n2 . Итак Sin